La integral y el cálculo de áreas
Área bajo la gráfica de una función

Objetivo

Calcular el área limitada por la gráfica de una función $f(x)$ en el intervalo $[a,c]$, donde $f(x)$ sea positiva en el intervalo $[a,b]$ y negativa en el intervalo $[b,c]$ y limitada por el eje horizontal.

Procedimiento

Para calcular el área bajo la gráfica de una función $f$, se utiliza la definición de la integral definida

$$\int_{a}^{b}{f(x)dx=F(b)-F(a)}$$

donde $f$ es continua en el intervalo $[a,b]$ y $F$ es una primitiva de $f$.

En este caso, como una sección de la gráfica es positiva y la otra negativa, éstas se integran por separado para obtener sus áreas. El área de la sección positiva de la gráfica es mayor que cero, y de la misma manera, el área de la sección negativa es menor que cero; al final, para determinar el área total, se suman sus valores absolutos.

Justificación

La interpretación geométrica de la integral definida es el área limitada por la gráfica de una función y el eje horizontal. En general, si $f$ es continua en $[a,b]$ y $f(x)≥0$ para todo $x$ en $[a,b]$, entonces la integral definida, $\int_{a}^{b}{f(x)dx}$, es el área limitada por la gráfica de $f$ y el eje $x$ entre $a$ y $b$.

Ejemplos

A continuación, se muestran ejemplos para el cálculo del área limitada por la gráfica de una función y el eje horizontal, cuando una sección es positiva y la otra negativa. El punto de intersección de la gráfica con el eje $x$ delimita, respectivamente, el extremo derecho e izquierdo de los dos intervalos de integración.

Presiona el botón Continuar para observar paso a paso el procedimiento.

Ejercicios

Calcula el área que se pide empleando la integral definida y anota el resultado en el espacio correspondiente. Pulsa ↵ antes de oprimir el botón Verificar.


Unidades interactivas para bachillerato desarrolladas por la Dirección General de Evaluación Educativa de la UNAM en colaboración con el Instituto de Matemáticas y el Proyecto Arquímedes.

Autor: Octavio Fonseca Ramos

Editores académicos: José Luis Abreu León y Carlos Hernández Garciadiego

Editor técnico: Carlos Alberto Serrato Hernández


Adaptado a DescartesJS en el proyecto LITE 2013 financiado por CONACyT.

Adaptación: Víctor Hugo García Jarillo y Deyanira Monroy Zariñán

Asesoría técnica: José Luis Abreu León, Oscar Escamilla González y Joel Espinosa Longi


Adaptado para dispositivos móviles por la DGTIC en colaboración con el IMATE y el LITE. Diciembre de 2014.

Adaptación: Juan José Rivaud Gallardo

Asesoría técnica: José Luis Abreu León y Joel Espinosa Longi

Coordinación: Deyanira Monroy Zariñán


Actualización tecnológica y de estilo, 2019.

Actualización: Joel Espinosa Longi


Los contenidos de esta unidad didáctica interactiva están bajo una licencia Creative Commons, si no se indica lo contrario.

Los componentes interactivos fueron creados con Descartes que es un producto de código abierto.