Paralelismo y perpendicularidad
Ecuación de la recta que pasa por un punto y es perpendicular a otra

Objetivo

Determinar la ecuación de la recta que pasa por un punto y es perpendicular a otra recta.

Procedimiento

Dada la recta $y=mx+b$, todas las rectas con la pendiente recíproca y de signo contrario, es decir, $-\frac{1}{m}$ serán perpendiculares a ésta.

En particular, para encontrar la ecuación de la recta perpendicular a la anterior que pase por un punto $(p,q)$ hay que encontrar $c$ que satisfaga la ecuación:

$$q=-\frac{1}{m}p+c$$

El valor de $c$ se encuentra despejándola de la ecuación, como se muestra en la solución.

Solución

Ejercicios


Unidades interactivas para bachillerato desarrolladas por la Dirección General de Evaluación Educativa de la UNAM en colaboración con el Instituto de Matemáticas y el Proyecto Arquímedes.

Autora: Zinnya del Villar Islas

Edición académica: Carlos Hernández Garciadiego y Octavio Fonseca Ramos

Edición técnica: Norma Patricia Apodaca Alvarez


Adaptado a DescartesJS en el proyecto LITE 2013 financiado por CONACyT.

Adaptación: Víctor Hugo García Jarillo y Deyanira Monroy Zariñán

Asesoría técnica: José Luis Abreu León, Oscar Escamilla González y Joel Espinosa Longi


Adaptado para dispositivos móviles por la DGTIC en colaboración con el IMATE y el LITE. Diciembre de 2014.

Adaptación: Juan José Rivaud Gallardo

Asesoría técnica: José Luis Abreu León y Joel Espinosa Longi

Coordinación: Deyanira Monroy Zariñán


Actualización tecnológica y de estilo, 2019.

Actualización: Joel Espinosa Longi


Los contenidos de esta unidad didáctica interactiva están bajo una licencia Creative Commons, si no se indica lo contrario.

Los componentes interactivos fueron creados con Descartes que es un producto de código abierto.