Obtener la ecuación ordinaria de una parábola conociendo dos elementos distintos al vértice.
La ecuación ordinaria de una parábola horizontal con vértice en un punto $(h,k)$ es de la forma:
$(y-k)^{2}=4p(x-h)$, si abre hacia la derecha $(y-k)^{2}=-4p(x-h)$, si abre hacia la izquierda $(1)$
en donde $p$ es la distancia del vértice al foco.
La ecuación ordinaria de una parábola vertical con vértice en un punto $(h,k)$ es de la forma:
$(x-h)^{2}=4p(y-k)$, si abre hacia arriba $(x-h)^{2}=-4p(y-k)$, si abre hacia abajo $(2)$
en donde $p$ es la distancia del vértice al foco.
Si se conocen algunos elementos de la parábola se debe encontrar el vértice y el valor del parámetro p a partir de ellos, para encontrar su ecuación ordinaria, (1) o (2).
Utiliza los pulsadores del siguiente recuadro interactivo; cambia el valor de las coordenadas del punto conocido y observa cómo se modifica la ecuación ordinaria y general de la parábola cuando $x$ y $y$ asumen valores tanto negativos como positivos.
Determina lo que se te pida en cada caso. Escribe el resultado en los campos de texto del cuadro y a continuación presiona Intro. Si tu respuesta es correcta, se inhabilitará el campo de texto; en caso contrario, deberás reintentarlo. Al terminar se desplegará el botón que te permitirá acceder a otro ejercicio. Recuerda que al dar doble clic sobre un campo de texto se desplegará la calculadora.
Unidades interactivas para bachillerato desarrolladas por la Dirección General de Evaluación Educativa de la UNAM en colaboración con el Instituto de Matemáticas y el Proyecto Arquímedes.
Autores: Carlos Hernández Garciadiego y Eréndira Itzel García Islas
Edición académica: José Luis Abreu León, Carlos Hernández Garciadiego y Joel Espinosa Longi
Edición técnica: Norma Patricia Apodaca Alvarez y Fernando René Martínez Ortiz
Adaptado a DescartesJS en el proyecto LITE 2013 financiado por CONACyT.
Adaptación: Víctor Hugo García Jarillo y Deyanira Monroy Zariñán
Asesoría técnica: José Luis Abreu León, Oscar Escamilla González y Joel Espinosa Longi
Adaptado para dispositivos móviles por la DGTIC en colaboración con el IMATE y el LITE. Diciembre de 2014.
Adaptación: Juan José Rivaud Gallardo
Asesoría técnica: José Luis Abreu León y Joel Espinosa Longi
Coordinación: Deyanira Monroy Zariñán
Actualización tecnológica y de estilo, 2019.
Actualización: Joel Espinosa Longi
Los contenidos de esta unidad didáctica interactiva están bajo una licencia Creative Commons, si no se indica lo contrario.
Los componentes interactivos fueron creados con Descartes que es un producto de código abierto.