La parábola a partir de algunos de sus elementos
Ecuación ordinaria de una parábola conociendo dos elementos distintos al vértice

Objetivo

Obtener la ecuación ordinaria de una parábola conociendo dos elementos distintos al vértice.

Recordatorio

La ecuación ordinaria de una parábola horizontal con vértice en un punto $(h,k)$ es de la forma:

$(y-k)^{2}=4p(x-h)$, si abre hacia la derecha $(y-k)^{2}=-4p(x-h)$, si abre hacia la izquierda $(1)$

en donde $p$ es la distancia del vértice al foco.

La ecuación ordinaria de una parábola vertical con vértice en un punto $(h,k)$ es de la forma:

$(x-h)^{2}=4p(y-k)$, si abre hacia arriba $(x-h)^{2}=-4p(y-k)$, si abre hacia abajo $(2)$

en donde $p$ es la distancia del vértice al foco.

Procedimiento

Si se conocen algunos elementos de la parábola se debe encontrar el vértice y el valor del parámetro p a partir de ellos, para encontrar su ecuación ordinaria, (1) o (2).

Solución

Utiliza los pulsadores del siguiente recuadro interactivo; cambia el valor de las coordenadas del punto conocido y observa cómo se modifica la ecuación ordinaria y general de la parábola cuando $x$ y $y$ asumen valores tanto negativos como positivos.

Parábola horizontal conociendo el foco y la directriz

Parábola vertical conociendo el foco y la directriz

Ejercicios

Determina lo que se te pida en cada caso. Escribe el resultado en los campos de texto del cuadro y a continuación presiona Intro. Si tu respuesta es correcta, se inhabilitará el campo de texto; en caso contrario, deberás reintentarlo. Al terminar se desplegará el botón que te permitirá acceder a otro ejercicio. Recuerda que al dar doble clic sobre un campo de texto se desplegará la calculadora.


Unidades interactivas para bachillerato desarrolladas por la Dirección General de Evaluación Educativa de la UNAM en colaboración con el Instituto de Matemáticas y el Proyecto Arquímedes.

Autores: Carlos Hernández Garciadiego y Eréndira Itzel García Islas

Edición académica: José Luis Abreu León, Carlos Hernández Garciadiego y Joel Espinosa Longi

Edición técnica: Norma Patricia Apodaca Alvarez y Fernando René Martínez Ortiz


Adaptado a DescartesJS en el proyecto LITE 2013 financiado por CONACyT.

Adaptación: Víctor Hugo García Jarillo y Deyanira Monroy Zariñán

Asesoría técnica: José Luis Abreu León, Oscar Escamilla González y Joel Espinosa Longi


Adaptado para dispositivos móviles por la DGTIC en colaboración con el IMATE y el LITE. Diciembre de 2014.

Adaptación: Juan José Rivaud Gallardo

Asesoría técnica: José Luis Abreu León y Joel Espinosa Longi

Coordinación: Deyanira Monroy Zariñán


Actualización tecnológica y de estilo, 2019.

Actualización: Joel Espinosa Longi


Los contenidos de esta unidad didáctica interactiva están bajo una licencia Creative Commons, si no se indica lo contrario.

Los componentes interactivos fueron creados con Descartes que es un producto de código abierto.